
Crate Factory
Technical Documentation

This manual is for those who would like to cre-
ate new material sets for the parts of the Crate Fac-
tory product either for personal or commercial.

First some words of wisdom for anyone who want to
do something extra with Crate Factory, there are limi-
tations, and they are bound to the actual props that
comes with the set. There is no idea trying to create a
new create with different dimensions, it will fail as the
cf_cratemaker script is tuned to work with objects of the
dimensions given in the set, nothing else.

But what is possible to do is:

- Create new crate sides, beams, nuts and bolts or
skids, just assure they do load at the position and rota-
tion of the props in the product.

- Create new material sets for existing prop parts, re-
member that every material has a low resolution coun-
terpart and a low resolution texture map set, which is
crucial to the functionality of creating create sets that
does now totally hog your system.

- Create new and interesting definitions using the exist-
ing props and materials to increase the difference in
looks between crates, and create definitions to use any
new props or materials you have created.

This technical manual will only focus on that last bit, the
anatomy if the definition files.

Important note!
When editing these files, it is very important to use a
real text editor that does to have the horrible idea of
replacing quotes with typographic quotes. For JSON
files, the quotes used are standard double quotes, but
if they are replaced by typographic quotes, the file will
not load.

The main functionality is driven by two types of files,
the Crate Factory Model Definition files, .cfmd, and the
Crate Factory Object Definition, .cfod.

The definition files are pure JSON files, you can learn
more here: https://www.json.org

We will begin with the .cfmd file, as that file is what con-
trols the whole design of a crate, and also holds the
information visible to the user.

The header of the .cfmd file holds some basic informa-
tion about the model definition, where most of it is used
by the GUI in the Single Crate Creator or the Crate
Factory to display information about the crate this defi-
nition will generate.

title: The title of the module definition shown
to the user.

info: A short descriptive text describing the
result and the options available, and also
which settings this crate is best suited for.

thumb: The filename of the thumb file, located in
private/thumbs and should be a transparent .png
at 180 x 180 pixels. The thumb should show some
variations of the resulting crate.

basesize: an object describing the prop frame
in DAZ Studio units and also what type it is,
square or rectangular. This information is only
used as information to the cf_cratebuilder but
do not rely on making your own prop will work
just because you enter it's dimensions here.
The members of this object are:
x: width in X-space
z: depth in Z-space
type: square or rect

settings: An array of strings listing every
setting this crate would fit into. You can add
any words here and it will be available in the
filter in Single Crate Creator and in Crate Fac-
tory.

Below follows the objects that describe the actual prop
definitions and parameters.

frame: The frame object array. In the frame
array you can add multiple frame definition ob-
jects, which means that if there are two frames
that do have the same size (within margins),
you can randomly select one of those frames and
the base frame for the crate. Each frame object
has the following layout:

object: name of the .cfod definition file for
this object.

attachments: either null (which means no at-
tachments attached) or an array of optional at-
tachments for the frame. Each attachment object
has the following members.

type: A string code for the attachment used for
identifying the type, for example all feet has
the type feet, all joints have the type joint.
This is so the cf_cratebuilder only picks one
attachment of each type.

name: The name shown in the GUIs where this at-
tachment can be enabled or disabled.
optional: If the attachment is optional and
will have a checkbox in the GUI where it can be
turned on or off.

optionalchance: [Optional] The chance that this
texture option is activated. 1 - 100, if this
setting is not given, the chance is 100 per
default.

object: name of the .cfod definition file for
this object.

chance: a figure from 1 - 100, percentage chance,
that this is the picked attachment when several
attachments are listed. If the sum of the total
chances are less than 100, the last in the list
will get the remaining chances.

sides: This is the sides object array, which
holds an array of position objects that defines
each of the sides, which object options and
beam options that side will have.

position: The position describing each side.
It holds two objects, one array of integers
listing which sides this position handles, and
data, which is an array of the actual defini-
tions. The sides are numbered as follows:

1 = Front
2 = Back
3 = Right
4 = Left
5 = Top
6 = Bottom

data: An array definition objects of a position
that holds information for that position. When
randomly picking, the same .cfod file will be
used for all the sides controlled by the posi-
tion object.

Example:
If you define a position for sides 1 - 4, containing two
different definitions, one with a steel side and one with
a plywood side, all sides 1 - 4 will be either steel or
plywood, but the .cfod file will give the material op-
tions to use for each side. Then you have another po-
sition for sides 5 and 6 that only lists a wooden plank
side, then that .cfod file will give the material options
for those.

object: name of the .cfod definition file for
this object.

chance: [Optional] a figure from 1 - 100, per-
centage chance, that this is the picked side
when several sides are listed. If the sum of
the total chances are less than 100, the last
in the list will get the remaining chances.

type: [Optional] A string identifying this tea-
ture option, which is the option for a special
texture option on the first of the listed sides.

name: The name shown in the GUIs where this op-
tion can be enabled or disabled.

optional: If this texture option is optional
and will have a checkbox in the GUI where it
can be turned on or off.

optionalchance: [Optional] The chance that this
texture option is activated. 1 - 100, if this
setting is not given, the chance is 100 per
default.

beams: Either null, or an array with possible
beam objects to be attached to this side.

object: name of the .cfod definition file for
this object.

chance: a figure from 1 - 100, percentage chance,
that this is the picked beam when several beams
are listed. If the sum of the total chances are
less than 100, the last in the list will get the
remaining chances.

type: [Optional] A string identifying this beam
option.

name: The name shown in the GUIs where this op-
tion can be enabled or disabled.

level: [Optional Sets at which detail level the
bean is loaded or not. The detail levels are:

1 = High details
2 = Medium details
3 = Low details

This setting is particularly interesting if you
create a very detailed beam that you do not
want to be available on lower detail levels.

attachments: either null (which means no at-
tachments attached) or an array of optional at-
tachments for the beam. The attachment object
is as described above.

As you see, there are a lot of flexibility built into the
Crate Factory Model Definition files. Now, let's take a
look at the Crate Factory Object Definition files too
see how they interact with the Model Definitions. The
header will give some important base information for
the cf_cratebuilder script on how and where to load
the prop,.

type: What type of object this is, the options
are: Side, Frame, Beam or Attachment. The cf_
cratemaker will cowardly refuse to load a Ob-
ject Definition of the wrong type.

class: A text describing the type of Object
this file will load. This is descriptive infor-
mation only.

directory: In which subdirectory of Crate Maker
the object and materials will be found. This is
very important. By default there are two base
directories, Parts Metal and Parts Wood.

object: The name of the actual Prop that should
be loaded, just the name, not any path infor-
mation, as the prop is loaded through the DAZ
Studio loading mechanism.

mats: This is an array of Material definition
objects of four different types. The four types
and their usage will be described below.

mat: Holds the name to the actual Material defi-
nition file, just the file, not any path informa-
tion. You add one mat object for each optional
texture you have for this object. This is as
objects with detail level 1, high, will have
different textures on each side, textures that
are from the same base but with a different
touch, to make the crate look less repetitive
when several are stacked together. On level 2,
medium level, one randomly picked texture will
be used on all sides.

matlow: Holds the name to the low resolution
Material definition file, which will be used at
a detail level 3. The texture maps used should
be smaller, about 25% of the original size, as
objects on level 3 will be away from the camera
and smaller.

matfirst: This is either an array, or a single
file name of a material file. This material is
used if type, name and option is set in a data
object for a side position in the .cfmd file
that load this .cfod file. This is the trick
to have some side textures with text, logos or
signs on.

cf_cratemaker will when the crate creation is
started, choose one of these options for the
crate, and then if the matfirst option is an ar-
ray randomly select diffent materials of the
same type for different sides, again to avoid
repetitive look, or if it is only a material
definition file name, use that for every first
side.

The first side is the side that comes first in the
position side array in the .cfmd file.

Example:
If the .cfmd file has three position entries for the side
object, one saying 1,2,3, one saying 4, and one say-
ing 5,6, the first sides are 1, 4 & 5, which means that
side 1, 4 & 5 will use the matfirst material.

matfirstlow: Exactly the same thing as matfirst,
but the low resolution version, works the same
way.

So, that was the technical walkthrough of the param-
eters in the definitions files. There are more files in the
private directory but those are not for editing, but for
the predefined layouts and not interesting to edit, I
promise. Now it's time to look at some files and see
how it looks.

{
"title": "Modern Plywood Crate",
"info": "A crate with a wooden frame, plywood sides, skids and bolts and
occasional beams, with optional text on the top and on one side, suitable
for modern or post apocalyptic settings. The crate has two slightly different
frame options randomly picked, and it has user options to choose with or
without wood skids.",
"thumb": "mc_plywood.png",
"basesize": { "x": 110, "z": 110, "type": "square" },
"settings": ["Modern", "Post apocalyptic"],

"frame": [{
 "object": "woodframe1modern.cfod",
 "attachments": [{
 "type": "skids",
 "name" : "Wood Skids",
 "optional" : true,
 "object": "skidswood.cfod",
 "chance": 100
 },
 {
 "type": "framejoints",
 "name" : "Frame Joints",
 "object": "metaljointwframe1.cfod",
 "level": 1,
 "chance": 100
 }]
}],

Let's take a look at the .cfmd file for the Modern Ply-
wood Crate, a little shortened.

First, always, a JSON file starts with a {, and ends with
a }, which you will see when we come to the end of
the file. Here you first see title, info, thumb, basesize &
settings. title info & thumb are defined as strings, while
basesize is an object with three members and settings
is an array with two string values.

Now we look at the frame object, as you see it's one
frame, the woodframe1modern.cfod with two diffrerent
attachments, skidswood.cfod and metaljointwframe1.
cfod. The framejoints attachment is only loaded when
the level is 1, highly detailed, as they are barely visible
on longer distances than close.

The skids are optional, and will show a checkbox in
the GUI in both in the Single Crate and Crate Factory
scripts.

You could add an optionalchance here, which would
randomly set or nor set the skids, as this works for all
attachments.

"sides": [
{ "position": [1, 2, 3, 4], "data":
 [{
 "object": "woodsideplywoodtext.cfod",
 "chance": 100,
 "type": "sidetext",
 "name" : "Text on side",
 "optional": true,
 "optionalchance": 65,
 "beams": [{
 "object": "woodbeammodern1.cfod",
 "chance": 20,
 "name": "Wood Beams",
 "level": 3,
 "attachments": [{
 "type": "beambolts",
 "name" : "Beam Bolt",
 "object": "beambolts1modern.cfod",
 "level": 1,
 "chance": 100
 }]
 },{
 "object": "woodbeammodern2.cfod",
 "chance": 20,
 "name": "Wood Beams",
 "level": 3,
 "attachments": [{
 "type": "beambolts",
 "name" : "Beam Bolt",
 "object": "beambolts2modern.cfod",
 "level": 1,
 "chance": 100
 }]
 }}]
}]},
{ "position": [5,6], "data":
 [{
 "object": "woodsideplywoodtextup.
cfod",
 "type": "toptext",
 "name" : "Text on top",
 "optional": true,
 "optionalchance": 65,
 "chance": 100,
 "beams": null
 }]
}]}

Now we look at the sides definition. As you see it has
two position blocks, one for sides 1-4 (the sides), and
one for 5-6, top and bottom.

object tells which .cfod file to be read for prop and ma-
terial options, in this case woodsideplywoodtext.cfod,
then beams defines which beam options exists, and
what attachments these beams will have.

optionchance of the side tells cf_cratemaker that there
is a 65% chance that the side should have the mat-
first/matlowfirst texture, which is the optional texture with
text or signs on.

There are two different beams, either woodbeammod-
ern1.cfod or woodbeammodern2.cfod to choose from,
(in the real file there are three, but one was omitted due
to space considerations for this manual.

As you see the beams will be available up to level
3 (low resolution), while the beam bolt attachments
will only be available on level 1 (high resolution).

On sides 5 and 6, there are no beams, beam says null.
It's important to set beams to null, and not just omit it,
as cf_cratemaker will treat a cfmd file without beams
as broken.

{
"type": "Side",
"class": "Metal Steel",
"directory": "Parts Metal",
"object": "CF Flatside 2.duf",
"mats": [
{ "mat": "CF Flatside 2 Steel 1.duf" },
{ "mat": "CF Flatside 2 Steel 2.duf" },
{ "mat": "CF Flatside 2 Steel 3.duf" },
{ "mat": "CF Flatside 2 Steel 4.duf" },
{ "mat": "CF Flatside 2 Steel 5.duf" },
{ "mat": "CF Flatside 2 Steel 6.duf" },
{ "mat": "CF Flatside 2 Steel 7.duf" },
{ "mat": "CF Flatside 2 Steel 8.duf" },

{"matfirst": [
"CF Flatside 2 Steel Toxic 1.duf",
"CF Flatside 2 Steel Toxic 2.duf"]},
{"matfirst": [
"CF Flatside 2 Steel Nuke 1.duf",
"CF Flatside 2 Steel Nuke 2.duf"]},
{"matfirst": [
"CF Flatside 2 Steel VX 1.duf",
"CF Flatside 2 Steel VX 2.duf"]},

{ "matlow": "CF Flatside 2 Steel 1_low.duf" },
{ "matlow": "CF Flatside 2 Steel 2_low.duf" },
{ "matlow": "CF Flatside 2 Steel 3_low.duf" },
{ "matlow": "CF Flatside 2 Steel 4_low.duf" },
{ "matlow": "CF Flatside 2 Steel 5_low.duf" },
{ "matlow": "CF Flatside 2 Steel 6_low.duf" },
{ "matlow": "CF Flatside 2 Steel 7_low.duf" },
{ "matlow": "CF Flatside 2 Steel 8_low.duf" },

{"matlowfirst": [
"CF Flatside 2 Steel Toxic 1_low.duf",
"CF Flatside 2 Steel Toxic 2_low.duf"]},
{"matlowfirst": [
"CF Flatside 2 Steel Nuke 1_low.duf",
"CF Flatside 2 Steel Nuke 2_low.duf"]},
{"matlowfirst": [
"CF Flatside 2 Steel VX 1_low.duf",
"CF Flatside 2 Steel VX 2_low.duf"]}
]
}

Let ut take a look at a complicated .cfod file, the steel-
side.cfod.

As you see first comes a header that says this is a
Side, and it's Metal Steel, and it should load the prop
CF Flatside 2.duf from the directory Parts Metal, which
is a subdirectory of the product directory Crate Fac-
tory.

The he have a series of mats, first the normal mat
ones, telling us there are 8 materiels variatrions to the
CF Flatside 2 Steel, 1 - 8, and the same for the lowres
versions, under the matlow object.

The interesting parts here are the matfirst definitions
(and also the matlowfirst, but they are basically iden-
tical in functionality to the matfirst, just points to the
lowres materials.

the matfirst object contains an array here, with two
different materielsm the first matfirst says "CF flatside
2 Steel Toxic 1.duf" and the second says "CF flatside
2 Steel Toxic 2.duf". That tells us that the material CF
flatside 2 Steel Toxic has two versions of if, the same
basic texture with differences in it, in this case different
dirt and wear, this is to make the crates looks even
more differentiated from each other even when they
have the same basic texture.

If there only is one variation in the matfirst, no array is
used and it's entered just as a normal mat object.

The reason for this is that the first time cf_cratemaker
finds a matfirst or a matlowfirst object it randomizes
between them, and keeps the outcome and reuses
the number for any subsequent randoms, so id you
have one set of textures with one text and signs and
another with another text and sign, it will keep "on the
same theme" so to speak.

I hope this manual dod not bore you t death, and
remember, it was written for those who would like to
expand Crate Factory with their own definitions.

